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A Session With TINKER:
Interleaving Program Testing With Program Design

Henry Lieberman and Carl Hewitt

Artificial Intelligence Laboratory
and Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract

Tinker is an experimental interactive programming system which integrates

program testing with program design. New procedures are created by
working out the steps of the procedure in concrete situations. Tinker

displays the results of each step as it is performed, and constructs a

procedure for the general case from sample calculations. The user

communicates with Tinker mostly by selecting opeations from menus on an

interacive graphic display rather than by typing commands. This paper

presents a demonstration of our current implementation of Tinker.

I. Introduction

Tinker is our first attempt at building an experimental programming environment for
Lisp which explores two new directions in programming methodology:

Programs arc tested with examples as they are being written: In conventional systems,
the user writes a complete program, then tests it as a whole. In Tinker, new
functions are defined by supplying examples, and working out the steps of the
procedure on examples, As each step of the program is introduced, the effect of that
step on an example is displayed immediately. Tinker remembers the steps and
constructs a procedure for the general case. Program writing and program testing
happen simultaneously.

Menu selection can replace much typing in constructing programs: Instead of specif)ing
operations and operands by typing, the system displays on the screen a menu of
available choices whenever possible, and the user simply points to one to select it.

A 5"slon Wltt TINKER
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The user doesn't have to remember or look up in a manual what commands are
available or what the syntax of the language is We are experimenting with Tinker
to see to what extent menu selection can replace typed commands in designing and
debugging prograns.

We chose the name Tinker to suggest the process of building or fixing something in
small steps, incrementally making a small change, seeing what happens, then making
another change.

In contrast to previous research labelled as programming by example, Tinker doesn't
attempt to try to guess the definition of the procedure from simply a statement of
what values the function returns for given arguments. Instead, we must explicitly
demonstrate the steps which the procedure must take to compute the value.
Guessing the procedure definition from input-output histories is a much harder
problem. It is an automatic programming task which is currently beyond the state
of the art for non-trivial examples. Tinker's contribution lies in integrating the use of
examples with program construction.

Rather than describe the capabilities of Tinker in the abstract, we feel that a good
way to convey our ideas about programming methodology is to show Tinker in
action. The body of this paper will consist of a demonstration of Tinker, presenting
it to the reader as we would to a new user of the system. The illustrations depict
what appears on the user's display screen. We will explain features of Tinker as
they are encountered in the demonstration.

Our session with Tinker will consist of three parts, starting out very simply and
working up toward more complicated tasks. The first part will discuss Tinker's user
interface, and show how to build tip and evaluate Lisp expressions using Tinker.
The second will show how to introduce new functions into Tinker, illustrating the
role of examples. The third part will present a more realistic scenario, one which
would be plausible for an experienced user. This will show how to define functions
with conditionals through the use of multiple examples, and recursive functions using
partially specified definitions.

2. Getting started

The first illustration shows what Tinker looks like when it's first started. The screen
starts out with three windows.

A Sessin With TINkEA 2. Getttnq started
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The large window in the center of the screen is the snapshot window. The snapshot
window shows the current state of the computation. Whenever we introduce a new
object or piece of program text, it will appear in the snapshot window. The
snapshot window always contains a partial definition of the body of some function.
(Initially, we're defining a special function called HISTORY, which contains top level
evaluations.) Litter, when we define a new function, the name of the ftnction will

appear in the label of the snapshot window, and we will construct a definition for it
in the snapshot window.

At the top of the screen is the Tinker Edit menu. This shows the list of available
operations at the top level of Tinker. These operations edit the contents of the
snapshot window. They may create, delete, move or modify objects in the snapshot
window. We'll explain what each editing operation does as we go along.

We can select atn itein from the menu by pointing to its name and pressing a button.
Tinker ruts on the MIT Lisp Machine, a personal computer equipped with a movse,
a p,,iting device. The current position of the mouse is indicated on the screen by
an X. When the position of the mouse touches the name of an operation, the name
is highlighted on the screen.

I-ne window at the bottom of the screen is the editor window. Occasionally, Tinker
will ask the user to type something, such as names for functions, or code to be
executed. Everything typed on the keyboard goes into the editor window.
Infortnmatxe messages [like Jhelcome to Tinker. and error messages also appear in the
editor window. The editor window is connected to Zwei, a sophisticated real-time
displ.v text editor. This gives the user access to a wide range of editing operations
wvheneer a, ihing is typed. The editing operations include motion across characters,
words, sentences, and expressions; search; cut and paste; expansion of a bbreviations;
and inanv minore. This is in contrast to many systems which only allow a few trivial
ekliting operations when typing input, and require the user to use a separate editor
program tor more extensive changes.

3. When Tinker evaluates some code it remembers both the value and the code

We will first show how to use Tinker as a kind of desk calculator for Lisp, building
uip lisp expressions and evaluating them. Whenever Tinker evaluates an expression, it
rem'mbers the code that produced that value. Whenever that value is used as an
ingr,:.;iezt in a subsequent computation, the code corresponding to the value is
carried along. [his allows us to incrementally build up complicated expression&

A Sp...ln With TINKFR 3. When Tinker evaluates some code It remembers both the value and the code
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Since we get to see all the intermediate results along the way, we can immediately
verify the accuracy of each step before proceeding to the next.

One way of introducing new expressions to Tinker is by typing. Tinker provides two
operations for introducing something new into the snapshot window by typing. The
TYPEIN and EVAL operation is like the READ-EVAL-PRINT loop of Lisp. It reads a Lisp
expression in the editor window (prompting with Type something to evaluate), and
calls EVAL on it. TYPEIN, but DON'T EVAL is similar, but doesn't evaluate the
expression. It just reads an expression and puts it in the snapshot window.

The first thing we do is select TYPEIN and EVAL, and type in the code (LIST 1 2 3)
in the editor window. This evaluates to the list (1 2 3). In the snapshot window
appears a message telling us that the value (1 2 3) was produced by the code (LIST
1 2 3).

A Session With TINKER 3. When Tiker evaluates some code It remebeta both the value and the code
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Defini nu (tIISTORY):

Exa'mple: (1 2 3), Code: (LIST 1 2 3)

I

I

Figure 2. Selecting the menu operation "TYPEIN and EVAL".

(In this case, the code is always going to evaluate to the same value, but in general

the code might have variables, and the value shown may only be an example of what

the code could evaluate to.)

A Se%%ion Willt TINKER 3. When Tinker evaluates some code It remembers both the value and the code



February 4, 1960 at 0:49 Page 6

To show what happens when we make further use of the value (1 2 3), let's try
reversing the list. We select the operation CALL a function, and Tinker asks us for
the narne of the function in the editor window. We type in REVERSE.

Def in int I (ISIORY)

Example: (1 2 3), Code: (I1ST 1 2 3)
[;ode: (RI-VLRS)

(LIST 1 2 3)

Iat's (he nlane of Ihe fvtntliovt t udll?
REVERSI

Edt, tt,r |-B rj, .,

Figure 3. Selecting the menu operation "CALL P fn, t ion".

It's not strictly necess.irv that we access the function by typing its name. We would
like to extend Tinker so that we could point to aim operand like the list, and Tinker
would produce a menu of poqsib.hie operations on it, based on the type of the data.
For lists, it could kitow that common operations on lists are CAR, CDR, CONS, IAULL,
and one of these could be chsqCn, or another menu containing a larger number of
less connmon functions could be selected. linker could also interactively check the
types of arguments. If we inadvertently selected an argument of the wrong t)'pe,

A Se 5,,lon With T:VjEr R ". Wh.'n Tir1ker )'alj.te .. rrma e l1p it iernenirs both the value and the cde
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Tinker could warn us right away, and we could fix it immediately. In conventional
systrems, the bug would go undetected until mnuch later.

W\hat appears now on the screen is a partial description of somne code, a call to
REVERSE. It isnt complete yet, because we haven'mt filled in the arguments to
REVERSE, and evaluated it.

Next, we select Fill in an ARGUMENT. Selecting the list ( 1 2 3) chooses it as the
argumient to REVERSE, Pnoring the list inside the call to REVERSE. Tinker
ouioinaialh' makes this selection for us, rather than stopping to ask, since there was
only one piece of code that needed arguments, and only one object on the screen
that could possibly be an argument to REVERSE

nor ii I (HIISTORY):
Code: (RE V[.RS[ (Q(101I 1I 3))

'Eximnplfe: (1 2 3). Code: LIST 1 2 3)"9

%iitu-i thiere wai. ottly- onte elinit I a',iiint'i:
"Colde: I REX'RSE)"

sin. oilui wa% only ont- hir e, I as%%11111r':

F i gure 4. Selecting the mnenu operation "Fill in an ARGUMENT".

A Session With TINK~ER 3. Wren Tinker evaluates some code It remembers both the value and the code
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Tinker has a policy of bot hering the user as little as possible; if it can determine
that there's only one reasonable choice to be made, it goes ahead and makes the
choice. (The choice can always be retracted, of course, if it had any unwanted
consequences.) Tinker informs uas of this in the editor windowv by saying Since there
was only one choice, I assumed:......If there were itiore than one possibility,
Tinker would ask us which one we wanted. We shall see this later. Automatically
making the ob 'ious choice in the current context Is very helpful, especially to
experienced programmiiers who find that this speeds up interaction with the system
This automatic choice feature can he disabled for naive users, or those wiho don't
find it to their taste.

Now that we've filled iII all the arguments. we choose EVALUATE something, to find
out the value of the Call to REVERSE. (Tinker could he inade to realize that sinice
REVERSE takes only one argumient1 the code could tie evaluated as soon as that
argument IS filledI in.) T his produces the list (3 2 1) from (0 2 3).

F X.1m 11 vc (3 1) Cod: C R t-V L S F I 151 1 7 3)

Figure35 Scltnn,)F the meru operitlun "EVALUATL someth ing".

Notice th~t thle code (LIST 1 2 3) that 1)rc'ducCd the argument to REVERSE appears in
the code port ion. When we uised the list as a component of a larger expression, the
code which produced tha, t lli t Is carried along as part of the code for the larger
expression. We ca111 buildi upl large expressions a little bit at a time, and Tinker
mnakes visible allI the internickii.nc steps of the evaluation, so we can verify that each
step had tile effect we in1teildvd.

A Sessionl With 1 3 Wihpn Tinker evluales somne code It remembers both the value and the (ode
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In this way, Tinker allows us to build up parts of a program like pieces of a jigsaw
puz-:le We're free to piece together small parts of a program in any order, then
combine them into larger chunks. The order in which we evaluate expressions while
constructing the program doesn't have to be the same as the order in which the final
program will evaluate expressions. We can write the program in the left-to-right
order as we would write it conventionally, or we can follow the bottom-up order of
evaluation. We believe this added flexibility will make it much easier to
increnmentallv construct and modify programs.

4. Defining a new function using an example

We will now demonstrate how to tell Tinker about a new function. Tinker will
learn about a new function by watching us work out an crample of a typical use of
the new function. We will show Tinker how to perform each step of the definition
of the function. Tinker will remember each step, showing us the result of each step
on the data we supplied it in the example. When we've finished working out the
example, Tinker will generalize that example and construct a procedure for the
general case.

A SessIon With TINKER 4. Defining a new function using an example
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WVe will start with it very simple example, so the reader can get the flavor of ouir
approach, and we will then proceed to more complex examples. We will now definle
a1 funCtionl 2ND which extracts the second element of a list using the operations CAR
and CDR.

To begin, we pretend we already have the definition of the function 2ND, and we
show Tinker a sample of howv we would like the procedure to be used. We feed it
the list (FIRST SECOND THIRD), and we would like it to evaluate to SECOND.

We vise TYPEIN, but DON'T EVAL to enter the code (2ND '(FIRST SECOND THIRD)) then
use NEW EXAMPLE for function, to identify this as a new example for the function
2nd.

__________ Def inirul (11ISTORY): ___________

Code: (2ND (QUOTE (I IRsT SECOND TBIRD)))

Typ soine rude:

Ed, tf ct 111 j.'

Figure 6. Seecting the mnenu operation "NEW EXAMPLE for function".

A Session With TINKER1 4. Defining a new function using an exampte
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The label of the snapshot window informs us that we are now defining what the
code RND '(FIRST SECOND THIRD)) should evaluate to. Tinker has saved the state of
the snapshot Nvindow. Inside the snapshot window, we see that Tinker manufactured
a new variable, which it called 2ND-ARG-1, to represent the single argument to the
procedure 2ND. (We could, if we like, rename the variable.) Tinker tells us that the
list (FIRST SECOND THIRD) is an example of the argument to the function 2ND. Given
the arguments as raw material, we compute the value of the procedure in the
snapshot window.

Def ining (2ND (Q!JOT (I IRSI S[CONJD THIRD))):
ExaimpleC: (FIRST SECOND THIRD), Codle:2ND-ARG-1

Code: (CDR)

Figure 7. Selecting the menu operation "CALL a FUNCTION".

A Session Wth TINKER 4, Defining a now funvction using an example
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To extract the second element of the list, we nust first chop off the first element
using the function CDR We perform the menu operations CALL a function, type in
CDR, Fill in an ARGUMENT, then EVALUATE something. After these three operations,
we're shown that the CDR of the argument to ZND is the list (SECOND THIRD).

_effininij (?NO (O0T1 (I IPSI SL[cOmi) IIIIRD))):

Example: (FIRSI S[CONI) IIIPRD), Code: ?rND-ARG-l
Example: (SECONID JIIIRD), Code: (CDR ?ND-AR(;-I)

Figure 8. Selecting the menu operation "EVALUATE something".

Now, we're getting closer. We can see that the symbol SECOND is the first element of
that list, and we can obtain it by taking the CAP,. Tinker shows us that the answer
we want, SECOND, is obtained by taking first the CDR, then the CAR of the argument
to 2ND.

A Sel %on With TINKER 4. Defining a new function using an example

Iq
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S~~Next aryjieint to (CAR)? __

Examr 1c: r iRsi SUCOD THI1RD), Code: ?ND-ARG- I
x: [xarnp I: (St CON!) 1111D) , Code: (CDII ?ND-AR(-2)I

Code: (CAR)

higlurie 9. SHf'(tin",, the menu operation "Fill in an ARGUMENT".

Although tis function is really simple, it illustrates an important point about Tinker.
III Conventional programmning, extracting elements of a list with CARS and CDRs is
usually an error-prone process. Itfs very easy to specify one operation too few or
too mnany. This is because when we specify a path through a data structure, we
have to imagine w~here the path will lead. Since Tinker shows us all the
intermnediate results when the path is specified, the immediate visual feedback makes
it easy to verify that a sequence of operations has the desired result

A Session With TINKER 4. Defining a now functioni using an example
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Since we've no"- obtained our desired result for the function, we select the RETURN it

value operation, saying we want to return SECOND its the result of (2ND '(F IRSi
SECOND THIRD)).

vet1rn1 Whi 1ch One?
Exa1mp Ic e I IVS'1 SE CONI1) I tu1M), C:otle: ?NI)-ARG- 1
[xmple: S[(:0NV, C:odr:_(CAR (CD1? 2ND-ARG- I)

Figure 10. Selecting the menu operation "RETURN a value".

A StsSion With TINKER 4. Defning a now function using an eotampie
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Tinker restores the state of the snapshot window, returning us to HISTORY. In the
editor windoIw, we examine the definition of 2ND. This shows us that Tinker has
writteni the code for 20D, defining it as a function of one argument

IDef i i j( 11%iSORY) ___

F xamp I.: SI COulD, Code: (?ND (QIJ0r[ (IFIRS I SLCOND11111M)j))

I(RINDLI.I 2ND)
$ I)[:FUtN 2NDl I2Nfl-AR( ;- 1)

ICAR 1( IM 2Nfl-A1(;-1)))

T

Figure 1 1. Selecting the menu operation "RETURN a value".

The output produced hy Tinker is a ordinary Lisp program, indistinguishable from a
definlition typed in using the mnore conventional methodology. When were writing a
programh, Tinker maintains its own data representation for programns, and has its own
evalutator, so it can provide services the ordinary Lisp system does not provide. But
since Tinker also writes ordinary Lisp code, functions produced by Tinker can be
compiled with the Lisp compiler. This ineans there's no penalty for using Tinker
during program development. The resulting code runs just as efficiently as if it were
writ tenl Conventionally.

A-"~ sion With TINiKFf 4. Defining a now function using an exampl.



February 4, 1980 at 0:49 Page 16

Notice that as soon as our procedure appears, we are guaranteed that it works for
the test case we've given it! There's no separation between writing a program miid
testing it. Instead, both writing and testing are interleaved and performed
incrementally.

Tinker's approach is more robust than conventional systems. When a piece of
erroneous code is introduced in a conventional program, it is usually buried deep
within many other operations before we get a chance to see whether the code h:i-
the desired result for typical test cases. The symptoms appear only when the entire
program is tested, and an error message or incorrect result is produced. We are
then faced with the arduous task of isolating the erroneous code from many other
operations, most of which are irrelevant. With Tinker, we can see that an incorrect
piece of code fails to work for a test case as soon as it is introduced to the system.

S. Defining a function with conditionals and recursion

Now that we've shown how to define a simple function with Tinker, we will proceed
to a more realistic scenario. This will show how to introduce functions with
conditiona/s and recursiot.

A folk wisdomi among programmers says that in order to thoroughly test a program,
at least ont, eXample for each branch of a conditional must be tried. So, to define a
program with a conditional, we must provide Tinker with several examples, each one
illustrating in important path for the resulting program.

We will also use a set of examples to build up functions with recursive calls. At any
time, the ex:amples we've given so far for a function will generate a partial definition
of that function. It may not completely define the function we want, but the partial
definition %%ili work for the examples given it so far. We can then extend the
function' bchaviour with new examples wkhich enable it to handle new cases, building
upon the partial definition.

Our demonstration will show defining a symbolic differentiation function. The
t'uiimi will aciept a list representing a symbolic expression in prefix form, and
return the symbolic derivative in the same form. The DERIVATIVE function will have
several cwes, based on the type of the expression, and may need to recursively
colittie the derivative of a subexpression.

A Session With T;NKEA 6, Defining a functlon with cornitionals and tecu-s on
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First, let's tell Tinker about a very simple case. The derivative of a variable is1
wvith respect to itself. For this, we give Tinker the example (DERIVATIVE IX IX).

Decli iii (IIIsloP))

C:ode: (DERIVAI IVE (91)011 X) (QU011 X))

F;gure 12. Selecting the menu operation "NEW EXAMPLE for function".

We type in the constant I using TYPEIN and EVAL, and return it with RETURN a value.

[ef in iiq (D1l lI VA I IV! (00011I X) (00011 _X))
F xam Il e H , C:ode v R IVA I IV1 -APG- I
F xiampjIc X , Coll v: V)1 R IVAI I Vt -ARG-?2

Exalriple: ICode: I

I: Jr I~i' l j; l Iri s lii vnti opera*tion *.tIflilIHN it viii iIo".

A F$eslon With TiNk.ER 5. Defining a function with conditionals and recursion
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Next, we present a intore complicated example. Let's try the derivative of the
t'*l txpiaoi (+ X :). This example leads to elonsidering tw-o more cases: we shall tt'll
I aku- h,,% hi) 1.kc (he dvi'l'i live of an ersj i C.'IOII wluchI i1 Su sum, and also how tu

lake 111t. dvi im ai a. oh a ci)II~idiit.
Dt I

I xample' I. Code: (III IVAI I VI (()tloll X) ( Uo1 ii )))

(:,,c .: (IiIVIVAtlvI (QIJOII (+ X 3)) (QUoII X))

Figure 14. Sele(t;ng the menu operation "NEW EXANPLE for function".

The r-cursi'e rule for finding the derivative of a sum says that the derivative of a
sutim is the stim of the derivatives of the subexpressions. We extract the
subexpressions X and 3 from the suum (+ X 3). Tinker remembers that x is the
second element of the first argument to DERIVATIVE, and that 3 is the third elemenat.

A v,%..n Vlt, ' 5 bot'rig a fun' lioni Wish condiijonais 4rod iP r,
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-efrili jil (HPTVA IMv (9110 IF (+ X 1)) (Qt lM )W

I X lP l) I: ( + X 3), (: l( F I I VA I VF -APG- I
I xamp 1) I: X , Cotle : UI P I VPI IV I -APG - ?

F X IIII)c: X , Cod :: (CA IP f I VA I IVI -AP(;- I)
F xilJnl)1 : I , (ode ((AIiPP DII IVAI1 VI -AP,;- I)

F li'uf e' I'. Selo( tinm the menu operation "EVALUATE something".

Now, we have to take the derivative of X, so we CALL a function, t)pe DERIVATIVE,

Mid feed it the subexpression x as an argument Since taking the derivative of a
variaOle is something Tinker already knows how to do, we simply EVALUATE it,

retutrning the answer 1.

Defining (DERIVATIVE (QUOTE (+ X 3)) (QUOTE X)):

Example: (+ X 3), Code: DERIVATIVE-ARG-I
Example: X, Code: DERIVATIVE-ARG-?

Example: 3, Code: (CADDR DERIVATIVE-ARG-I)
Example: 1, Code: (DERIVATIVE (CADR DERIVATIVE-ARG-l) DERIVATIVE-ARG-)

Fq(irt 16 S'lec tin,, the menu operation "EVALUATE something".

A ,r , W11h TINKFA 5. Defining a function with conditlonals and recutsion
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Newi, we t ry the samte thing with the other suhexpressiou, 3 Biut W-lit __ - inker
doesn't know% how to take the derivative of a constant like 3 yet. So, we have to fell
it. Instead of evaluating the call (DERIVATIVE 3 IX), We select NEW EXAMPLE for

function, telling Tinker we wish to define this case.

l)etIiffiltIj (D)I IVAI IVJ (1.11101 (+ )< .I)) (qm) .I I ))

I XdjjIlI Ic: ( + Y( 1) 01~I Hi ~ IVA lIV, -AP(;-I
I y>jayjj It. X~, ol : I I pIVAIl VI -AV(,-?

I XcIIIt' Ij I EjileI 1) IP VA I lVI ( LAlul (if Vt IVA VI 1- AIG- I )III P IVA Il VI f'l'G- ?

.,III Il I I V / I I VI I f jl1 I Y~)

Figure 1 7. Selecting the menu operation "NEW EXAMPLE for function".

We leave temporarily the process of defining the derivative of (+ X 3) to define the
derivative of 3. This shows a kind of top down program development process. In the
course of developing our DERIVATIVE procedure by stepwise refinemrent, we discovered
ai new case that had to be handled. We can produce a definition of that new case,
then return to the caller to continue with the original definition. This would also be
usefuil If we discovered that it would be helpful to have an auxiliary function. We
couild define the auxiliary function, make sure it works in the cases needed by Its
caller, then return to continue the definition of the caller.

We would like Tinker to support a top down debugging methodology. WVhat tempts
1most practical programnmers to a bottom uip programming style rather than the
conceptuall\ cleaner top down programming style advocated by experts? To a great
extent, it is the fact that debugging is usually performed bottom up. Subprocedures
are tested before the calling procedures can be debugged. One well-known wvay to
encourage top down debugging is the use of dummy subprocedurel To test a calling
procedure, a partial definition of the subprocedure is constructed, which need only be
sufficient to test the cases used by the calling procedure.

A 5p %sor, With TlNkEA 6. Defining a function with conditionals and recursion
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Tinker makes top down debugging very convenient When we decide we would like
to use it subprocedure we haven't written yet, we write the call to it, and define it
using the NEW EXAMPLE operation, just having it return the answer for a specific case
rather than compute the value in general. This allows us to test the calling
procedure. Later, when we are ready to w~rite the definition of the subprocedure, we
Aread& have it set of appropriate test cases to guide uts in writing the definition.

Now, we type in a ats the answer for the derivative of the constant 3, and select
RETURN a value.

Jpf liiq_ (DmIRIVAJIV 3v (QUOIF X)):

Ixape 3, Code: DIRIVAMIIVARG-l
Ixa(.mple: X, Code: DIRIVAI TV[I-ARG-?

txamplep: (1, Code: a

Figure 18. Selecting the menu operation "RETURN a value".

This gives Tinker two examples for the DERIVATIVE function,

(DERIVATIVE IX IX) evaluates to I
(DERIVATIVE 3 IX) evaluates to 8

Tinker compares the code for the two cases, and notices that they'"re different. So
Tinker decides that the code for the DERIVATIVE function must contain a conditional.
But howv should the two cases be distinguished?

A 501,51n With TINK~ER 5. Defining a function with conditionals and recursion
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Tinker asks us to distinguish between the two cases by defining a predicate for the
coli]i I onai. When defining .1 predicate, Tinker displays livo snapshot windows. One
will correspond to the trute case of the conditional, one to the false case.

Tirue predc~ icate for: I xainple; I , Codle: I
Fxample: X, Codle: OIRIVAI IVI -ARG-1
Example: X, Codle: DIRIVATIVI-ARG-2

False pi-elicate for: Ixamp)IC: ti, Colic: 0
fxamlfle: 3, Codle: DIRIVAI'iVift-ARG-l
Exaniphe: X, Code: DFRIVATIVE-ARG-2

Typ~e 4.nwnelIiiiiig to evaliItiate:

How doi I d~ii 41 " 1.4.1 he'tweeii
"Example: 1. Code: I" and
"Example: ft. Code: WA

Figure 19. Selecting the menu operation "RETURN a value".

As wye define the predicate, code will appear simultaneously in both windows. Since
the values of the arguments to DERIVATIVE are different in the two cases, the code
for the predicate may evaluate differently in one window than the other. Hopefully,
if we've successfully defined a predicate to distinguish between the two cases, the
predicate will evaluate to T (Lisp's way of saying true) in the top window, and NIL
(Lisps false) in the other.

A Ses'Ion With riNPKER 5. Defining a function with condiioniuis and recursion



Fe'ay4. 1960 at 0:49 Page 23

H ow do we decide how to choose between the two cases? hiI the first case, the
distinguishing property is that the two argumients to DERIVATIVE are equal. So, wve
enter the Code (EQUAL DERlVATIVE-ARG-1 DERIVATIVE-ARG-2), and see that It evaluates

tT in the top window, NIL in the bottomn window. We return this as the value of
the predicaite.

True predicate for: Example: 1, Code: 1
Example: X, Code: DERIVATIVE-ARG-I
Example: X, Code: DERIVATIVE-ARG-2

Example: T, Code: ('EQUAL DERIVATIVE -AG-I DERIVATIVE ARG- 2

False predicate for: Example: 0, Code:0
Example: 3, Code: DERIVATIVE-ARG-l
Example: X, Code: DERIVATIVE-ARG-2

Example: NIL, Code: (EQUAL DERIVATIVE -ARG-1 I ERIVATIVE -ARG-2)

Figure 20. Selecting the menu o-peration "RETURN a value".

Tinker's displaying both cases of a conditional is valuable in that it helps to assure
that the predicate perforis its desired function of separating the two cases. Often,
the dlist Ingu ishing predicate is mnore easily determined after the code for the cases
appears. Conditionals can also be introduced explicitly in a mnore conventional
iiianiner with thle Phike a CONDITIONAL nienu operation. We would also like to provide
the op~tion of leaving one branch of the conditional undefined while the code for the
other branch is worked out.

A Se:.u . v Niih TIPJKFR 5. Defining a function with conditionals and recutsion
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Tinker returns to the case of defining the derivative of the sum, (+ X 3) We
examnet the code for the DERIVATIVE function that Tijiker's built up so far. We call
see that the code consists of an ir with the predicate and the two cases we've
defined.

Defining (DERIVATIVE (QUOTE (4. X 3)) (QUOTE X)):
Example: (4. X 3), Code: DERIVATIVE-ARG-1

Example: X, Code: DERIVATIVE -ARG-2
Example: 1, Code: (DER~IVATIVE (CADR DERIVATIVE -ARC-i) DERIVATIVE ARG-2)

Example: 0, Code: (DERIVATIVE (CADOR DERIVATIVE -ARC-i) DERIVATIVE-ARG-2)

Ill I EQU. kRVA'rlVI.-ARk(:-1 I l:IUVAIVE-AIM-2)

Figure 21. Selecting the mnenu operation "RETURN a value".

At this stage, Tinker thinks that in every case where the arguments to DERIVATIVE
aren't equal, the answer is zero. This isn't correct of course, but it constitutes a
partial definition, correct for what we've shown it so far, and we will continue to
extend the definition.

A Session With TINKER ~.Defining a function with conditionals and recursion



Fet.-uary 4, 1980 at 0:49 Page 25

We've computed the derivatives of the subexpressions, now it's time to combine them
to form the derivative of the sum. Since the derivative of a sum is the sum of the
derivatives, we construct a list of the symbol + and the expressions for the
derivatives of the subexpressions. Evaluating this results in the list (+ 1 8).

lD ininq (11 P IVAI IVI (QUOill (+ X 3)) (000lf X))

I x:ami n I,: ( + X 3), Code: 1 I' 1iVAI VI -AR(;- I

I xamitp I : I X, (ouc: ii F IVAI IVi -AR(;-?

I X,1,III)) ( + I ) , Cod: (I I SI (oUOI I +) )

I w ' It., lhn i tle if-iL opertiOl "EVAI.JATF sonething".

(WC w(II'l hwiher 1r-yizg to simplify the expression for the derivative, so that it could
recognize ihat (+ 1 0) is the same as 1.) Since this is the correct answer for the
derivative of (+ X 3), we return it.

A 5ession With TiNKER S. Defining a function with conditionail and recursion
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This provides Tinker with yet another case for the DERIVATIVE function. Again, it
shows uts two snapshot windows and asks its to define a predicate, contrasting thle
suni with the last case we showed it, (DERIVATIVE 3 IX). WVe enter the code (ATOM
DERIVATIVE-ARG-I) to distinguish the constant case and return it. Nowv, Tinker canl
differentiate constants, variableq and sumns.

I rIle I cal v totl I xalmj)I(: It, Code: Hi
I xdtflpc: 3, Coidc: 1)1iRIVAtI VI-ARGt-11
I xiiitj : X , Code: D1 IIVA I IVI -AVG- ?I

I x amp I C: 1 , Cod r: (Alt 10- 1Pt RIVA I IVI -ARG- I)

False pred irl C~ fr: I >'.mpt) I: (+ I .. ),Co'd P (I 1ST, (Q1,10 1 +).._

I >:dtIlp Ic: ( + X< 3), Cmde: DIVtVAtiM -APG-I
Ix>amip 1 : X, Code: DiRiIVAI lVI -ARU--?

dII alipc: fM1t , ~Cde : (Al Oi Pt P1VA ViM -AP(;-)

Figure 23. Selecting the menu operation "RETURN a value".

Tinker currently treats mnulti-way branches or dispatches as nested two-way branches.
It is possible to inodify it to produce a dispatch directly.

A Session With TINKER 5. Def ining a function with conditionals and rectirsion
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To round out our DERIVATIVE prograin, we could add another case telling Tinker
how to do products, using the chain rule

IDcf inlifil (t1IOr'Y):
I Xdti) ) 1 , Code V tttl' 1VA I I V1 (w it I 1 (10I ( )<)

ExamplIe: (+I (I)! oC(4t (1tt I' VAI lVI (01101 (+ X ?)) (o11011 x) )
C:ott v (1t ) I VA (VI ( Q11il xi ( xX) ) ( Qk)()T 1X ) )

Fipure 201. Selecting the menu operation "NEW EXAMPLE for function".

Del H0)111 (I)IRIVAIJVI (0001F ( X X)) (Q(1011 X)):

I xamp Ic: -(x X) , Code: 1)1R) VAI IVI-AR(;-1
Example: H, Code: DIRIVAIIV[-ARG-2

Example: (+ ( X . .. ) ) Code: (LIST (QUOTU +) . . .

Figure 25. Selecting the menu operation "RETURN a value".
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Tri je ptCel i ( at v 1i : I xamih I: I, (Aihl: (III P1 VAIl 1%1 (C(AP)P III P1 VAI IVI A-i)

I xallp Ii: ( + X~ J), Code III I VA I VI -AVG.- I

I .d~lflIc 1I, 0~I':( QIIAI (,:All lIiP IVAI IVI -ARG- I) (o il I I9))

Falser prc-dicale for)I: V~I.X.1t1pc: ( . Code, (11%1 (91101 C)

lxatmpte: (# X X), (Cde: IIIPIVAlIVI -AR;-11
I >dtInj)i e: X , (:odvc: P11, VA IIVI -AIG- ?

I xanip 1 : f ill oir (I QUA! (C(AH IVPI VA JIVI -ARI'.) (011011I 4))

Figure 26. Selecting the menu operation "RETURN a value".

And, if we're really going to be Conscientious about our derivative program, we
should also define a case where we can't take the derivative! (Prograiniers often
neglect to include negative examples as well as positive ones when testing a program.L
This is a primie cause of the fragility of inany current software systems.) We
illustrate a case where our DERIVATIVE function should produce an error mnessage.

Dirl 1111w; (lIISIORY):
I X4lltpcIC 1, UCleIP: ( IPIVAI lvi (Qt11011 X) (Qt1011 X) )

Ixample: (+ I0), Code: (IRIVAl lVI (001011 (+ X 'I)) (011011 X
EX40Ple: (+ ( * )( I X))f, Code: (l)IRIVAIIVI (001011( X x)) (()il11il X))

Code: (DIRJVATIVI (0)011 (IINKNOWN)))

Figure 27. Selectine the menu operation "NEW EXAMPLE for function".

A Session With TINK.ER 6. Defining a function with conditionals and rcutson



Februaly 4, 1980 at 0:49 Page 29

l11 1) "'AI  I V \: 1 1.111h) l t1 illno.1i!l ) (.11t Io I I x
" xat lplef (IlFJt \!,) ().ode: I I1 VAI IVI -AP(;- I

Ixam, v: X , Cot 1r ' III IVAI VI -AP,;- Z
IxqiuilplI : "Yoll iool('d!", Code: (I'PIIII "Yt'l (iootird'" )

F ,,jre 2. Selecti'nL the menu operation "EVALUATE something".
Trie pired i( ,t I t oi : I x.11111t (. f- ( + ( Y y . ) ). ( ,It.- (1 1,St ( ru'i ,,) 1.)

I .11mpI : ( X X) ('d : III t I VAII VI -AI!(;-I
I xalnp I : X , (:tl(-: IfI, I VAI VI -A (;- 7

I xutp Ilv I , Code- (I QIAI ( CA. I)M ,IVAI IVI -AVG-I) (;(-I )I I

F1 I S C p1r di l I f : I y llip I C: "Y il io f I (I'' 1 . Cod': (PI I.I I "Y ll , , I c t!'')
I xa ip l : (CIlodrFII J). (:o1 : 11 I11 VA I VI -A ,G- I

1 ,-di.j) I V: X, (od V : IfP VA IV I VI -AP(;-.
I xl~iif) If t'ri, L'dti: (I ItAI ( r:Al Of P I VAII VI -APG- I) ( ( I I )

II
Figure 29. Selecting the menu operation %tTURN a value".
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I)(- ill ima I  (III:,IIIIPY :

Ex. 11i1p 1 e I , (:il : ( DLR I VA f I Vt. (010 11 X 0)1( 1UOI X)
IXdllj)1V' (+ 1 I), (:(1l(: (I1II IVATIVL (01101l (+ X 3)) ()11011 y))

x nmpe: (+ ( * ' (X uI ) ( X) C ( I ll V I'lVA VI ( Vt ()tlr)ll rj) ,) (I)fIo ,If X) )
lxnmillel: "Yoi (wo,, l' !", ( D,( IV IVAI VI (1,)11011l (!irj|'rjw),!fJ)) ('f~ l

Figure 30. Selecting the menu operation "RETURN a value".

Collecting all these cases results in the following final program:

(DEFUN DERIVATIVE (DERIVATIVE-ARG-1 DERIVATIVE-ARG-2)

(IF (EQUAL DERIVATIVE-ARG-1 DERIVATIVE-ARG-Z) 1

(IF (ATOM DERIVATIVE-ARG-1) 8

(IF (EQUAL (CAR DERIVATIVE-ARG-1) '4)

(LIST '+

(DERIVATIVE (CADR DERIVATIVE-ARG-1)

DERIVATIVE-ARG-2)

(DERIVATIVE (CADDR DERIVATIVE-ARG-1)

DERIVATIVE-ARG-2))

(IF (EQUAL (CAR DERIVATIVE-ARG-1) ,)

(LIST '+

(LIST

(CADR DERIVATIVE-ARG-1)

(DERIVATIVE (CADDR DERIVATIVE-ARG-l)

DERIVATIVE-ARG-Z))

(LIST '*

(DERIVATIVE (CADR DERIVATIVE-ARG-l)

DERIVATIVE-ARG-2)

(CADDR DERIVATIVE-ARG-I )))
(PRINT "You goofed!*))))))

Associating examples with function definitions will yield important benefits during
prograin mainfenance as well as program construction. When the definition of a
function is 'dited, Tinker can run through all the test cases again, automatically, and
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issue a warning if any examples work out differently with the new definition.
Tinker can make sure that changes intended to extend the behaviour of some
function don't have the effect of breaking previously correct code.

6. Other features of Tinker

WVe will present brief explanations of other features of Tinker which appear on the
Tinker edit menu, but weren't encountered in the above scenario.

Tinker EDIT menu
CALL a function

Fill In an ARGUMENT
EVALUATE something

NEW EXAMPLE for function
TYPEIN and EVAL

TYPEIN but DON'T EVAL
Make a CONDITONAL

Edit TEXT
Edit DEFINITION

Step BACK
UNFOLD something

COPY something
DELETE something

Escape to LISP
RETURN a value

Figure [311 

UNFOLD is it kind of inverse to Fill in an ARGUMENT. It takes apart expressions,
removing the arguments from a piece of code. COPY duplicates an expression in the
snapshot window. DELETE simply removes an expression from the snapshot window.

Edit DEFINITION is the operation for modifying definitions of functions. It chooses a

specific example for a function defined with Tinker, and returns to a snapshot
window defining that example. Commands can be used to edit the definition which
appears in the window, and the definition of the function is suitably changed. We

A Sesion With TINKER 6. Other features of Tinker
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would like to have Tinker run through all the examples again to check to see if they
have changed as a result of the edit.

Step BACK is ;a debugging tooL Since Tinker always remembers the code that
produced every value which appears on the screen, the Tinker interpreter is
completely reversible! (Normally, the expense of remembering everything might be
prohibitive, but this is only done for functions being debugged with Tinker. After a
function is completed, it is compiled, and the overhead disappears.)

When a bug is encountered, we can simply step backwards until the offending
expression is found. Since we select which expression to examine from the nenu, it's
easy to skip over details of the evaluation of expressions which are irrelevant to the
bug. We can :oom in on bugs by examining evaluations at progressively finer levels
of detail. This is unlike conventional steppers which always step linearly forward or
breakpoints ard stack debuggers which always step backward and lose information
about evaluated arguments.

We also provide operations which fall back on the more conventional programming
tools, so that these can also be used in the cases where they're appropriate. Edit
TEXT takes the Lisp code representation for an item in the snapshot window, and lets
us edit it with the Zwei text editor. When we're finished editing the text, we can
indicate an expression in the editor and return it to Tinker to replace the originally
selected item. Sometimes it's easier to fix things by typing than by menu selection.

Escape to LIsP puts us in an ordinary Lisp READ-EVAL-PRINT loop in the editor
window. Any Lisp expression can be evaluated there, and the result is printed back
into the editor window. And, as we have seen, any typed Lisp expression can be
included in Tinker's snapshot window using the TYPEIN and EVAL operation. Ihus
Tinker can be used to supplement existing facilities rather than replace themi. Tinker
provides compatible interfaces to the conventional programming system which make
all of its features available as well

7. Previous work

'the most direct ancestor to our work was Smith's Pygmalion, which pioneered the
idea of menu-oriented programming. Our techniques of displaying examples and
source code for programs simultaneously, our direct production of Lisp code, our
method of abstracting conditionals, and the use of a set of test cases for each
function are some of the contributions which distinguish our work from his. Curry's

A Session With TINKER 7. Povous wor
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systeim is slimilar in spirit to Pygmalion, and both these systems made interesting use
of graphical rather than textual representations of programs, which we have not
e'xplored. Bierinann has an interesting systemi which applies automatic programming
techniques to synthesizing programs from demonstrations using examples. We see this
-is rItflae o ute eerh and we intend to experiment with hooking up
J iiker to the description systein Omnega of Attardi, Simi and Hewitt to perforin
reas~oniiig about the siructure of programs. Tinker might be useful as a basis for a
uiser interface to programn understanding systems such as that of Rich, Shrobe, and
Waters. While we are interested in incrementally, interleaving program construction
with it-sting, they have explored interleaving program construction with vcrification.
Ul'tiiately, we Would like to integrate all of these.
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